-
Smart collaborations beget smart solutions
August 7, 2015 Editor 0
Download a free copy of the new edition of BioCoder, our newsletter covering the biological revolution.
Following the Synthetic Biology Leadership Excellence Accelerator Program (LEAP) showcase, I met with fellows Mackenzie Cowell, co-founder of DIYbio.org, and Edward Perello, co-founder of Desktop Genetics. Cowell and Perello both wanted to know what processes in laboratory research are inefficient and how we can eliminate or optimize them.
One solution we’re finding promising is pairing software developers and hardware engineers with biologists in academic labs or biotech companies to engineer small fixes, which could result in monumental increases in research productivity.
An example of an inefficient lab process that has yet to be automated is fruit fly — Drosophila — manipulation. Drosophila handling and maintenance is laborious, and Dave Zucker and Matt Zucker from Flysorter are developing a technology using computer vision and machine learning software to automate these manual tasks; the team is currently engineering prototypes. This is a perfect example of engineers developing a technology to automate a completely manual and extremely tedious laboratory task. Check them out, and stay tuned for an article from them in the October issue of BioCoder.
The current issue of BioCoder highlights examples of collaborations between individuals with complementary expertise to provide solutions for problems across diverse areas of biological research. Examples include Biomeme, a smartphone-based diagnostic for the on-site detection of DNA; ABioBot, a smart robot using vision, sensing, and feedback to automate encodable laboratory experiments; and the Pelling Lab, which offers readers information on open source biomaterials as well as a tutorial on how to make your own scaffolds for tissue engineering, sprinkled with some excellent hardware hacks. These projects were developed through collaborations between hardware engineers, software engineers, and biologists.
This leads me to a query for biology researchers: what laboratory processes cause you distress? Is it your data analysis tool (or lack thereof), experiment design, expensive reagents, tracking of experiment information, a tedious technique that could benefit from a little automation, or a piece of hardware that could use some customization? Tweet specific examples to Mac Cowell, Edward Perello, or Nina DiPrimio. We want to hear from you.
Related Posts
No one size fits all! Lessons from legume–cereal rotations in smallholder farms
- Creating your own animated 3D characters and scenes for the web
Dirty to drinkable
Africa: Traditional Innovation in Farming Is Under Threat
Mobile data subscriptions account for 99 percent of all Internet access in Kenya
The Best Mobile Data Collection System Exists: Choice is the Challenge
Categories: Technology
Africa: Digging for Data On Africa’s Climate Future Missed Opportunities in Using Tech to Fight Violence Against Women
Subscribe to our stories
Recent Posts
- Entrepreneurial Alertness, Innovation Modes, And Business Models in Small- And Medium-Sized Enterprises December 30, 2021
- The Strategic Role of Design in Driving Digital Innovation June 10, 2021
- Correction to: Hybrid mosquitoes? Evidence from rural Tanzania on how local communities conceptualize and respond to modified mosquitoes as a tool for malaria control June 10, 2021
- BRIEF FOCUS: Optimal spacing for groundnuts in smallholder farming systems June 9, 2021
- COVID-19 pandemic: impacts on the achievements of Sustainable Development Goals in Africa June 9, 2021
Categories
Archives
Popular Post-All time
- A review on biomass-based... 1k views
- Can blockchain disrupt ge... 762 views
- Apply Now: $500,000 for Y... 755 views
- Prize-winning projects pr... 716 views
- Test Your Value Propositi... 688 views