-
Co-culture strategies for increased biohydrogen production
July 17, 2015 Editor 0
Summary
Biological hydrogen production from organic wastes is a less expensive, less energy-demanding, and environmental-friendly process. Pure monoculture delivers low H2 content and low yield; these limitations are overcome by a defined co-culture system, which outperforms mixed cultures with increased H2 yield. The strategies used in co-culture systems for increasing H2 production have been discussed in this review. The strategies include hydrolysis of a variety of complex substrates, such as cellulose, molasses, crude glycerol, and algal biomass into simple fermentable sugars for increased H2 yield by eliminating the use of exogenous enzymes. The strategies can bring geographically distant isolated microorganisms from different sources to coexist for simultaneous utilization of substrate and end metabolites into H2 production of 99.99% purity without the expenses of reducing agents. In the case of maximum hydrogen production using co-culture strategies, Clostridium, Enterobacter, and photo-fermenting bacteria in a consolidated bioprocess system will result in increased H2 yield. A co-culture system is more feasible to achieve theoretical H2 yield with high conversion efficiency of organic wastes, enhance the economic viability of H2 production, provide better effluent treatment quality, and concurrently address the limitations of H2 production. Copyright © 2015 John Wiley & Sons, Ltd.
Enhanced biological hydrogen production from industrial wastes through a co-culture system with two or more pure cultures has several advantages over monoculture. With co-culture strategies, hydrolysis of complex substrate, process improvements, use of immobilization technique, end metabolite utilization, co-substrate supplementation, and combined dark and photo-fermentation resulted in increased hydrogen production. In case of maximum hydrogen production using co-culture strategies, Clostridium, Enterobacter, and photo-fermenting bacteria are the best choice of microorganism.
Related Posts
Use of information and communication technology to support employee-driven innovation in organizations: a knowledge management perspective
Reviewing The Influence Of IT Applications Such As Implementing Online Distribution Channels In Hotel Industry
- Engaging Environments: Tacit Knowledge sharing on the shop floor
Defining social entrepreneurship: a Schumpeterian non-solution
The More Time We Spend Online, the Less Time We Spend Working
- Mobile Innovation Roadshow empowers Southern African entrepreneurs and app developers
Categories: Energy
Tags: biohydrogen production
Social media: adoption and legal issues impact on business innovation An Appeal to the Global Health Community for a Tripartite Innovation: An "Essential Diagnostics List," "Health in All Policies," and "See-Through 21(st) Century Science and Ethics".
Subscribe to our stories
Recent Posts
- SL Crowd Green Solutions September 21, 2020
- Digital transformation in the banking sector: surveys exploration and analytics August 3, 2020
- Why Let Others Disrupt You? Take the Smart Self-Disruption Journey! August 3, 2020
- 5 Tips for Crowdfunding During the Pandemic August 3, 2020
- innovation + africa; +639 new citations August 3, 2020
Categories
Archives
Popular Post-All time
- A review on biomass-based... 0.9k views
- Can blockchain disrupt ge... 682 views
- Prize-winning projects pr... 678 views
- Apply Now: $500,000 for Y... 605 views
- Test Your Value Propositi... 533 views