• What we do
  • The People
  • About Us
  • Why Innovation Africa
  • Contact Us
Innovation AfricaCreating the Future Today
  • Feature Articles
  • Innovation
  • Agriculture
  • ICT
  • Technology
  • Entrepreneurship
  • Health
  • Store
  • Contact Us
Menu
  • Feature Articles
  • Innovation
  • Agriculture
  • ICT
  • Technology
  • Entrepreneurship
  • Health
  • Store
  • Contact Us
  • Coffee genome sheds light on the evolution of caffeine

    September 5, 2014 Editor 0

    Enzymes that help produce caffeine evolved independently in coffee, tea and chocolate, say scientists who have newly sequenced the coffee plant genome

    BUFFALO, N.Y. — The newly sequenced genome of the coffee plant reveals secrets about the evolution of man’s best chemical friend: caffeine.

    The scientists who completed the project say the sequences and positions of genes in the coffee plant show that they evolved independently from genes with similar functions in tea and chocolate, which also make caffeine.

    In other words, coffee did not inherit caffeine-linked genes from a common ancestor, but instead developed the genes on its own.

    The findings will appear on Sept. 5 in the journal Science.

    Why Coffee?

    With more than 2.25 billion cups consumed daily worldwide, coffee is the principal agricultural product of many tropical countries. According to estimates by the International Coffee Organization, more than 8.7 million tons of coffee were produced in 2013, revenue from exports amounted to $15.4 billion in 2009-2010, and the sector employed nearly 26 million people in 52 countries during 2010.

    “Coffee is as important to everyday early risers as it is to the global economy. Accordingly, a genome sequence could be a significant step toward improving coffee,” said Philippe Lashermes, a researcher at the French Institute of Research for Development (IRD). “By looking at the coffee genome and genes specific to coffee, we were able to draw some conclusions about what makes coffee special.”

    Lashermes, along with Patrick Wincker and France Denoeud, genome scientists at the French National Sequencing Center (CEA-Genoscope), and Victor Albert, professor of biological sciences at the University at Buffalo, are the principal authors of the study.

    Scientists from other organizations, particularly the Agricultural Research Center for International Development in France, also contributed, along with researchers from public and private organizations in the U.S., France, Italy, Canada, Germany, China, Spain, Indonesia, Brazil, Australia and India.

    The team created a high-quality draft of the genome of Coffea canephora, which accounts for about 30 percent of the world’s coffee production, according to the Manhattan-based National Coffee Association.

    Next, the scientists looked at how coffee’s genetic make-up is distinct from other species.

    Compared to several other plant species including the grape and tomato, coffee harbors larger families of genes that relate to the production of alkaloid and flavonoid compounds, which contribute to qualities such as coffee aroma and the bitterness of beans.

    Coffee also has an expanded collection of N-methyltransferases, enzymes that are involved in making caffeine.

    Upon taking a closer look, the researchers found that coffee’s caffeine enzymes are more closely related to other genes within the coffee plant than to caffeine enzymes in tea and chocolate.

    This finding suggests that caffeine production developed independently in coffee. If this trait had been inherited from a common ancestor, the enzymes would have been more similar between species.

    “The coffee genome helps us understand what’s exciting about coffee — other than that it wakes me up in the morning,” Albert said. “By looking at which families of genes expanded in the plant, and the relationship between the genome structure of coffee and other species, we were able to learn about coffee’s independent pathway in evolution, including — excitingly — the story of caffeine.”

    Why caffeine is so important in nature is another question. Scientists theorize that the chemical may help plants repel insects or stunt competitors’ growth. One recent paper showed that pollinators — like humans — may develop caffeine habits. Insects that visited caffeine-producing plants often returned to get another taste.

    The new Science study doesn’t offer new ideas about the evolutionary role of caffeine, but it does reinforce the idea that the compound is a valuable asset. It also provides the opportunity to better understand the evolution of coffee’s genome structure.

    “It turns out that, over evolutionary time, the coffee genome wasn’t triplicated as in its relatives: the tomato and chile pepper,” Wincker said. “Instead it maintained a structure similar to the grape’s. As such, evolutionary diversification of the coffee genome was likely more driven by duplications in particular gene families as opposed to en masse, when all genes in the genome duplicate.”

    This stands in contrast to what’s been suggested for several other large plant families, where other investigators have noted correlations between high species diversity in a group and the presence of whole genome doublings or triplings.

    “Coffee lies in the plant family Rubiaceae, which has about 13,000 species and is the world’s fourth largest; thus, with no genome duplication at its root, it appears to break the mold of a genome duplication link to high biodiversity,” Denoeud said.

    ###

    The research was funded by the French National Research Agency; Australian Research Council; Natural Sciences and Engineering Research Council of Canada; CNR-ENEA Agrifood Project of Italy; Funding Authority for Studies and Projects (FINEP Qualicafe) of Brazil; National Institutes of Science and Technology (INCT Cafe) of Brazil; the U.S. National Science Foundation; the College of Arts and Science, University at Buffalo; and in-kind support by scientists at Nestle’s research and development center in Tours, France.

    Related Posts

    • An innovative system for 3D clinical photography in the resource-limited settings.An innovative system for 3D clinical photography in the resource-limited settings.
    • UP  evaluating indigenous plants for cosmetic, medicinal useUP evaluating indigenous plants for cosmetic, medicinal use
    • Getting more out of nature: Genetic toolkit finds new maximum for crop yieldsGetting more out of nature: Genetic toolkit finds new maximum for crop yields
    • User Innovation in Techniques: A Case Study Analysis in the Field of Medical DevicesUser Innovation in Techniques: A Case Study Analysis in the Field of Medical Devices
    • Guiding the development of family medicine training in Africa through collaboration with the Medical Education Partnership Initiative.Guiding the development of family medicine training in Africa through collaboration with the Medical Education Partnership Initiative.
    • Innovations to enhance the quality of health professions education at the University of Zimbabwe College of Health Sciences–NECTAR program.Innovations to enhance the quality of health professions education at the University of Zimbabwe College of Health Sciences–NECTAR program.
    Sovrn
    Share

    Categories: Agriculture

    Tags: Caffeine, Genetic mapping, Genome, Health_Medical_Pharma

    Rising risk of failed seasons as climate change puts pressure on Africa’s farmers UK, SA launch multimillion-rand research and innovation partnership

    Leave a Reply Cancel reply

    You must be logged in to post a comment.

Subscribe to our stories


 

Recent Posts

  • Entrepreneurial Alertness, Innovation Modes, And Business Models in Small- And Medium-Sized Enterprises December 30, 2021
  • The Strategic Role of Design in Driving Digital Innovation June 10, 2021
  • Correction to: Hybrid mosquitoes? Evidence from rural Tanzania on how local communities conceptualize and respond to modified mosquitoes as a tool for malaria control June 10, 2021
  • BRIEF FOCUS: Optimal spacing for groundnuts in smallholder farming systems June 9, 2021
  • COVID-19 pandemic: impacts on the achievements of Sustainable Development Goals in Africa June 9, 2021

Categories

Archives

Popular Post-All time

  • A review on biomass-based... 1k views
  • Can blockchain disrupt ge... 807 views
  • Apply Now: $500,000 for Y... 806 views
  • Test Your Value Propositi... 759 views
  • Prize-winning projects pr... 726 views

Recent Posts

  • Entrepreneurial Alertness, Innovation Modes, And Business Models in Small- And Medium-Sized Enterprises
  • The Strategic Role of Design in Driving Digital Innovation
  • Correction to: Hybrid mosquitoes? Evidence from rural Tanzania on how local communities conceptualize and respond to modified mosquitoes as a tool for malaria control
  • BRIEF FOCUS: Optimal spacing for groundnuts in smallholder farming systems
  • COVID-19 pandemic: impacts on the achievements of Sustainable Development Goals in Africa
  • Explicit knowledge networks and their relationship with productivity in SMEs
  • Intellectual property issues in artificial intelligence: specific reference to the service sector
  • Africa RISING publishes a livestock feed and forage production manual for Ethiopia
  • Transforming crop residues into a precious feed resource for small ruminants in northern Ghana
  • Photo report: West Africa project partners cap off 2020 with farmers field day events in Northern Ghana and Southern Mali

Tag Cloud

    africa African Agriculture Business Business model Business_Finance Company Crowdsourcing data Development East Africa economics Education Entrepreneur entrepreneurs Entrepreneurship ethiopia ghana Health_Medical_Pharma ict Information technology Innovation kenya knowledge Knowledge Management Leadership marketing mobile Mobile phone nigeria Open innovation Organization Research rwanda science Science and technology studies social enterprise social entrepreneurship south africa Strategic management strategy tanzania Technology Technology_Internet uganda

Categories

Archives

  • A review on biomass-based hydrogen production for renewable energy supply 1k views
  • Can blockchain disrupt gender inequality? 807 views
  • Apply Now: $500,000 for Your Big Data Innovations in Agriculture 806 views
  • Test Your Value Proposition: Supercharge Lean Startup and CustDev Principles 759 views
  • Prize-winning projects promote healthier eating, smarter crop investments 726 views

Copyright © 2005-2020 Innovation Africa Theme created by PWT. Powered by WordPress.org