• What we do
  • The People
  • About Us
  • Why Innovation Africa
  • Contact Us
Innovation AfricaCreating the Future Today
  • Feature Articles
  • Innovation
  • Agriculture
  • ICT
  • Technology
  • Entrepreneurship
  • Health
  • Store
  • Contact Us
Menu
  • Feature Articles
  • Innovation
  • Agriculture
  • ICT
  • Technology
  • Entrepreneurship
  • Health
  • Store
  • Contact Us
  • A tailor made molecule against malaria

    March 12, 2014 Editor 0

    A team at the University of Geneva, Switzerland, discovers the Achilles heel of the Plasmodium and aims a molecular arrow to destroy it

    The malaria parasite is particularly pernicious since it is built to develop resistance to treatments. The lack of new therapeutic approaches also contributes to the persistence of this global scourge. A study led by Didier Picard, professor at the Faculty of Sciences of the University of Geneva (UNIGE), Switzerland, describes a new class of molecules targeting the two problems at the same time. Using ultra sophisticated computerised modelling tools, the researchers were successful in identifying a type of candidate molecules toxic for the pathogen, but not for the infected human red blood cells. The study, led in collaboration with researchers from the Geneva-Lausanne School of Pharmacy (EPGL) and the University of Basel, has been published in the Journal of Medicinal Chemistry.

    The most severe form of malaria is caused by infection with Plasmodium falciparum. The eradication of this parasite is even more difficult as it becomes resistant to treatments. The group led by Didier Picard, professor of biology at the Faculty of Sciences of UNIGE, Switzerland, is closely interested in the protein Heat Shock Protein 90 (HSP90), which plays a central role for several factors involved in the life cycle, survival and resistance of the pathogen.

    Modelling the target-protein of the Plasmodium

    Expressed in organisms as diverse as bacteria and mammal cells, HSP90 acts as a “chaperone”, by helping other proteins during both normal and stressful periods. In the Plasmodium, HSP90 protects parasitic proteins during high fevers triggered by its presence. The chaperone also participates in the maturation of the pathogen in human red blood cells. “Our goal was to determine if there was a difference between the human form and the parasitic form of HSP90 that we could exploit for therapeutic purposes”, explains Tai Wang, a PhD student at the Department of Cell Biology of UNIGE.

    The PhD student used ultra-sophisticated computerised modelling tools to characterise the various tridimensional conformations of the parasite’s HSP90. “The human chaperone harbours a “pocket” that binds molecules known to inhibit its activity. I compared it with that of the Plasmodium, hoping to find a difference which could be targeted by a specific inhibitor, but didn’t,” reported the researcher.

    A screening performed entirely in silico

    By studying the HSP90 of the pathogen from every possible angle, Tai Wang discovered another pocket capable of binding inhibitory substances, completely absent in its human alter ego. Using a supercomputer, he performed the screening of a virtual library containing more than a million chemical compounds while retaining those that could fit in this pocket. This screening in silico led him to select five candidates.

    These experiments were then completed by a “real time” modelling technique. “The simulations were conducted to analyse the dynamics of interaction between the HSP90 and the candidates, leading to the discovery of inhibitors which interact specifically with the Plasmodium falciparumchaperone”.

    The molecules were then tested in vitro in different systems. The biologists demonstrated in particular the toxicity of those inhibitors on Plasmodium falciparum cultures, in doses sufficient to kill the parasites without affecting the infected red blood cells.

    “These recently patented molecules are part of a group of compounds related to the 7-azaindoles, which exclusively bind the HSP90 of the parasite, but not the human form. The next step will be to fine-tune them in order to perform clinical tests,” concluded Didier Picard.

    Related Posts

    • An innovative system for 3D clinical photography in the resource-limited settings.An innovative system for 3D clinical photography in the resource-limited settings.
    • Innovating for the developing world: meeting the affordability challenge.Innovating for the developing world: meeting the affordability challenge.
    • UP  evaluating indigenous plants for cosmetic, medicinal useUP evaluating indigenous plants for cosmetic, medicinal use
    • User Innovation in Techniques: A Case Study Analysis in the Field of Medical DevicesUser Innovation in Techniques: A Case Study Analysis in the Field of Medical Devices
    • Innovative strategies for transforming internal medicine residency training in resource-limited settings: the Mozambique experience.Innovative strategies for transforming internal medicine residency training in resource-limited settings: the Mozambique experience.
    • Guiding the development of family medicine training in Africa through collaboration with the Medical Education Partnership Initiative.Guiding the development of family medicine training in Africa through collaboration with the Medical Education Partnership Initiative.
    Sovrn
    Share

    Categories: Science

    Tags: Health_Medical_Pharma, Hsp90 inhibitors, medicine, plasmodium, Plasmodium falciparum biology

    Agroforestry can ensure food security and mitigate the effects of climate change in Africa East Africa: Nairobi Ranked the Most Active Twitter City in East Africa

    Leave a Reply Cancel reply

    You must be logged in to post a comment.

Subscribe to our stories


 

Recent Posts

  • SL Crowd Green Solutions September 21, 2020
  • Digital transformation in the banking sector: surveys exploration and analytics August 3, 2020
  • Why Let Others Disrupt You? Take the Smart Self-Disruption Journey! August 3, 2020
  • 5 Tips for Crowdfunding During the Pandemic August 3, 2020
  • innovation + africa; +639 new citations August 3, 2020

Categories

Archives

Popular Post-All time

  • A review on biomass-based... 0.9k views
  • Can blockchain disrupt ge... 669 views
  • Prize-winning projects pr... 646 views
  • Apply Now: $500,000 for Y... 602 views
  • Test Your Value Propositi... 523 views

Recent Posts

  • SL Crowd Green Solutions
  • Digital transformation in the banking sector: surveys exploration and analytics
  • Why Let Others Disrupt You? Take the Smart Self-Disruption Journey!
  • 5 Tips for Crowdfunding During the Pandemic
  • innovation + africa; +639 new citations
  • SME Innovation: 10 Priorities for Support Post-COVID-19 
  • Africa RISING Annual Progress Report 2018 – 2019 now available
  • Fodder beet feed supplementation delivers dairy success for Ethiopian farmers
  • Using theory of change for outcome-oriented research
  • Africa RISING partners publish soil fertility management guidebook

Tag Cloud

    africa African Agriculture Business Business model Business_Finance Company Crowdsourcing data Development East Africa economics Education Entrepreneur entrepreneurs Entrepreneurship ethiopia ghana Health_Medical_Pharma ict Information technology Innovation kenya knowledge Knowledge Management Leadership marketing mobile Mobile phone nigeria Open innovation Organization Research rwanda science Science and technology studies social enterprise social entrepreneurship south africa Strategic management strategy tanzania Technology Technology_Internet uganda

Categories

Archives

  • A review on biomass-based hydrogen production for renewable energy supply 0.9k views
  • Can blockchain disrupt gender inequality? 669 views
  • Prize-winning projects promote healthier eating, smarter crop investments 646 views
  • Apply Now: $500,000 for Your Big Data Innovations in Agriculture 602 views
  • Test Your Value Proposition: Supercharge Lean Startup and CustDev Principles 523 views

Copyright © 2005-2020 Innovation Africa Theme created by PWT. Powered by WordPress.org