• What we do
  • The People
  • About Us
  • Why Innovation Africa
  • Contact Us
Innovation AfricaCreating the Future Today
  • Feature Articles
  • Innovation
  • Agriculture
  • ICT
  • Technology
  • Entrepreneurship
  • Health
  • Store
  • Contact Us
Menu
  • Feature Articles
  • Innovation
  • Agriculture
  • ICT
  • Technology
  • Entrepreneurship
  • Health
  • Store
  • Contact Us
  • New possibilities for efficient biofuel production

    August 15, 2013 Editor 0

    Limited availability of fossil fuels stimulates the search for different energy resources. The use of biofuels is one of the alternatives. Sugars derived from the grain of agricultural crops can be used to produce biofuel but these crops occupy fertile soils needed for food and feed production. Fast growing plants such as poplar, eucalyptus, or various grass residues such as corn stover and sugarcane bagasse do not compete and can be a sustainable source for biofuel. An international collaboration of plant scientists from VIB and Ghent University (Belgium), the University of Dundee (UK), The James Hutton Institute (UK) and the University of Wisconsin (USA) identified a new gene in the biosynthetic pathway of lignin, a major component of plant secondary cell walls that limits the conversion of biomass to energy. These findings published online in this week’s issue of Science Express pave the way for new initiatives supporting a bio-based economy.

    “This exciting, fundamental discovery provides an alternative pathway for altering lignin in plants and has the potential to greatly increase the efficiency of energy crop conversion for biofuels,” said Sally M. Benson, director of Stanford University’s Global Climate and Energy Project. “We have been so pleased to support this team of world leaders in lignin research and to see the highly successful outcome of these projects.” Lignin as a barrier

    To understand how plant cells can deliver fuel or plastics, a basic knowledge of a plant’s cell wall is needed. A plant cell wall mainly consists of lignin and sugar molecules such as cellulose. Cellulose can be converted to glucose which can then be used in a classical fermentation process to produce alcohol, similar to beer or wine making. Lignin is a kind of cement that embeds the sugar molecules and thereby gives firmness to plants. Thanks to lignin, even very tall plants can maintain their upright stature. Unfortunately, lignin severely reduces the accessibility of sugar molecules for biofuel production. The lignin cement has to be removed via an energy-consuming and environmentally unfriendly process. Plants with a lower amount of lignin or with lignin that is easier to break down can be a real benefit for biofuel and bioplastics production. The same holds true for the paper industry that uses the cellulose fibres to produce paper.

    A new enzyme

    For many years researchers have been studying the lignin biosynthetic pathway in plants. Increasing insight into this process can lead to new strategies to improve the accessibility of the cellulose molecules. Using the model plant Arabidopsis thaliana, an international research collaboration between VIB and Ghent University (Belgium), the University of Dundee (UK), the James Hutton Institute (UK) and the University of Wisconsin (USA) has now identified a new enzyme in the lignin biosynthetic pathway. This enzyme, caffeoyl shikimate esterase (CSE), fulfils a central role in lignin biosynthesis. Knocking-out the CSE gene, resulted in 36% less lignin per gram of stem material. Additionally, the remaining lignin had an altered structure. As a result, the direct conversion of cellulose to glucose from un-pretreated plant biomass increased four-fold, from 18% in the control plants to 78% in the cse mutant plants.

    These new insights, published this week online in Science Express, can now be used to screen natural populations of energy crops such as poplar, eucalyptus, switchgrass or other grass species for a non-functional CSE gene. Alternatively, the expression of CSE can be genetically engineered in energy crops. A reduced amount of lignin or an adapted lignin structure can contribute to a more efficient conversion of biomass to energy. This research was co-financed by the multidisciplinary research partnership ‘Biotechnology for a sustainable economy’ of Ghent University, the DOE Great Lakes Bioenergy Research Center and the ‘Global Climate and Energy Project’ (GCEP). Based at Stanford University, the Global Climate and Energy Project is a worldwide collaboration of premier research institutions and private industry that supports research on technologies that significantly reduce emissions of greenhouse gases, while meeting the world’s energy needs.

    Related Posts

    • One-stop shop for biofuelsOne-stop shop for biofuels
    • Tiny grains of rice hold big promise for greenhouse gas reductions, bioenergyTiny grains of rice hold big promise for greenhouse gas reductions, bioenergy
    • Project  overcomes challenges to deliver mushroom and electricity from agro-industrial wasteProject overcomes challenges to deliver mushroom and electricity from agro-industrial waste
    • Sustainable development with renewable energy resources: a reviewSustainable development with renewable energy resources: a review
    • Setting the standard for sustainable bioenergy cropsSetting the standard for sustainable bioenergy crops
    • East African dairy farmers using mobile phones to record yieldsEast African dairy farmers using mobile phones to record yields
    Sovrn
    Share

    Categories: Biofuel, Feature Articles, Renewable Energy

    Tags: bioenergy, biofuels, Bioproducts, Phenylpropanoids

    Why is Human-Centered Design Important to ICT4D? How will crops fare under climate change? Depends on how you ask (Global Change Biology)

    Leave a Reply Cancel reply

    You must be logged in to post a comment.

Subscribe to our stories


 

Recent Posts

  • Entrepreneurial Alertness, Innovation Modes, And Business Models in Small- And Medium-Sized Enterprises December 30, 2021
  • The Strategic Role of Design in Driving Digital Innovation June 10, 2021
  • Correction to: Hybrid mosquitoes? Evidence from rural Tanzania on how local communities conceptualize and respond to modified mosquitoes as a tool for malaria control June 10, 2021
  • BRIEF FOCUS: Optimal spacing for groundnuts in smallholder farming systems June 9, 2021
  • COVID-19 pandemic: impacts on the achievements of Sustainable Development Goals in Africa June 9, 2021

Categories

Archives

Popular Post-All time

  • A review on biomass-based... 1k views
  • Apply Now: $500,000 for Y... 798 views
  • Can blockchain disrupt ge... 797 views
  • Test Your Value Propositi... 749 views
  • Prize-winning projects pr... 722 views

Recent Posts

  • Entrepreneurial Alertness, Innovation Modes, And Business Models in Small- And Medium-Sized Enterprises
  • The Strategic Role of Design in Driving Digital Innovation
  • Correction to: Hybrid mosquitoes? Evidence from rural Tanzania on how local communities conceptualize and respond to modified mosquitoes as a tool for malaria control
  • BRIEF FOCUS: Optimal spacing for groundnuts in smallholder farming systems
  • COVID-19 pandemic: impacts on the achievements of Sustainable Development Goals in Africa
  • Explicit knowledge networks and their relationship with productivity in SMEs
  • Intellectual property issues in artificial intelligence: specific reference to the service sector
  • Africa RISING publishes a livestock feed and forage production manual for Ethiopia
  • Transforming crop residues into a precious feed resource for small ruminants in northern Ghana
  • Photo report: West Africa project partners cap off 2020 with farmers field day events in Northern Ghana and Southern Mali

Tag Cloud

    africa African Agriculture Business Business model Business_Finance Company Crowdsourcing data Development East Africa economics Education Entrepreneur entrepreneurs Entrepreneurship ethiopia ghana Health_Medical_Pharma ict Information technology Innovation kenya knowledge Knowledge Management Leadership marketing mobile Mobile phone nigeria Open innovation Organization Research rwanda science Science and technology studies social enterprise social entrepreneurship south africa Strategic management strategy tanzania Technology Technology_Internet uganda

Categories

Archives

  • A review on biomass-based hydrogen production for renewable energy supply 1k views
  • Apply Now: $500,000 for Your Big Data Innovations in Agriculture 798 views
  • Can blockchain disrupt gender inequality? 797 views
  • Test Your Value Proposition: Supercharge Lean Startup and CustDev Principles 749 views
  • Prize-winning projects promote healthier eating, smarter crop investments 722 views

Copyright © 2005-2020 Innovation Africa Theme created by PWT. Powered by WordPress.org