• What we do
  • The People
  • About Us
  • Why Innovation Africa
  • Contact Us
Innovation AfricaCreating the Future Today
  • Feature Articles
  • Innovation
  • Agriculture
  • ICT
  • Technology
  • Entrepreneurship
  • Health
  • Store
  • Contact Us
Menu
  • Feature Articles
  • Innovation
  • Agriculture
  • ICT
  • Technology
  • Entrepreneurship
  • Health
  • Store
  • Contact Us
  • Ethnomathematics: an Anthropological Approach to Software in ICT4E

    November 17, 2011 Editor 0

    math-blaster-software.jpg

    When I was in elementary school, there was one computer game that trumped all of the others: Math Blaster. In it, players would try to answer all of the math problems as quickly and accurately as possible in order to complete the space mission. Classmates and I would beg to play this game in the computer lab, and teachers were typically inclined to allot time for it, mostly because it was a productive and educational use of technology.

    When monitoring and evaluating the use of technology in developing countries, many ICT4D professionals describe how, after a while, technology in the classroom sits untouched or is used only for games that are not necessarily educational.

    So why not send over copies of Math Blaster?

    When considering the best use of software for students in developing countries, it is important to consider their background and culture. The significance of a mathematics education comes from the fact that it is applicable to so many aspects of daily life. While students in Western countries may be able to relate to space battles and aliens based on its presence in the media, students in developing countries will not find this application as applicable to them. In essence, by providing them with software representative of Western culture, they may come to believe that mathematics does not apply to their own lives and culture.

    In a research project funded by the National Science Foundation, Dr. Ron Eglash and a group of professors and students from Rensselaer Polytechnic Institute (RPI) are attempting to dispel this tendency by designing software based on ethnomathematics, a study of the relationship between math and culture. The software, referred to as Culturally Situated Design Tools, imparts mathematical concepts to students by having them create virtual designs based on original artifacts in their culture.

    One application, for instance, considers Native American culture, which uses a great deal of four-fold symmetry in beadwork. The “Virtual Bead Loom” software, developed by Computer Science students at RPI, introduces students to Cartesian coordinates by having them enter x and y coordinates to place “beads” on a grid. The end goal is to produce a bead design representative of Native American culture. To students of Native American descent, mathematics becomes much more meaningful and applicable to their lives by using this software. It also enforces a sense of pride in the students’ heritage.

    virtualBeadLoom_0.png
    While the application above provides the simplest example of how culturally situated software can enhance a student’s understanding of mathematical concepts, there are several other software applications being designed to impart mathematics concepts to students in developing regions of Africa.

    Math, African style

    The design of this software began with determining the types of designs represented in African culture. While viewing aerial-photos taken of African communities, Dr. Eglash noticed how houses in African villages were laid out in patterns representing perfect fractals. Further research on the ground proved that fractals appear everywhere in African design, from architecture to textiles. According to Dr. Eglash, “”When Europeans first came to Africa, they considered the architecture very disorganized and thus primitive. It never occurred to them that the Africans might have been using a form of mathematics that they hadn’t even discovered yet.” To hear more about Dr. Eglash’s discovery of fractals, view his TED talk.

     

    The software developed for teaching African students math through the virtual design of original African artifacts was thus primarily based on fractal and transformational geometry. Students using this software could see the application of mathematics to their everyday lives, and it made them appreciate math and their heritage to a much greater extent.

    The value of this approach to software in ICT4E lies in the methodology behind the design of its content. Careful consideration was taken to ensure that the approach to delivering education through technology was based on a thorough understanding of the background of the users. In essence, the software was designed for the students, not altered from existing software to accommodate them.

    This is the best way to approach software design for education in the developing world. It is not about finding a piece of software that worked in Western culture and making it work worldwide. Anthropological research is required to design software based on the specific and unique needs, abilities, and thought patterns of the students that will be using it. Without this, students can become disinterested in not only the technology but also the topics that it is attempting to convey.

     

    Go to Source

    Related Posts

    • Data Analysis Should Be a Social Event
    • The Dynamic Linkages between Foreign Direct Investment and Domestic Investment in ECOWAS Countries: A Panel Cointegration AnalysisThe Dynamic Linkages between Foreign Direct Investment and Domestic Investment in ECOWAS Countries: A Panel Cointegration Analysis
    • Supporting an open source approach to developmentSupporting an open source approach to development
    • Towards a modular toolkit for strategic technology managementTowards a modular toolkit for strategic technology management
    • Nigeria: DG Calls for Satellite Assembly FacilitiesNigeria: DG Calls for Satellite Assembly Facilities
    • Strategies for Global ConnectednessStrategies for Global Connectedness
    Sovrn
    Share

    Categories: ICT

    Tags: anthropological, approach, fractal, math, mathematical, mathematics

    Cutting-edge ICT incubator set to unleash entrepreneurship in Tanzania Effects of knowledge spillovers on innovation and collaboration in science and technology parks

    Leave a Reply Cancel reply

    You must be logged in to post a comment.

Subscribe to our stories


 

Recent Posts

  • Entrepreneurial Alertness, Innovation Modes, And Business Models in Small- And Medium-Sized Enterprises December 30, 2021
  • The Strategic Role of Design in Driving Digital Innovation June 10, 2021
  • Correction to: Hybrid mosquitoes? Evidence from rural Tanzania on how local communities conceptualize and respond to modified mosquitoes as a tool for malaria control June 10, 2021
  • BRIEF FOCUS: Optimal spacing for groundnuts in smallholder farming systems June 9, 2021
  • COVID-19 pandemic: impacts on the achievements of Sustainable Development Goals in Africa June 9, 2021

Categories

Archives

Popular Post-All time

  • A review on biomass-based... 1k views
  • Can blockchain disrupt ge... 764 views
  • Apply Now: $500,000 for Y... 760 views
  • Prize-winning projects pr... 717 views
  • Test Your Value Propositi... 706 views

Recent Posts

  • Entrepreneurial Alertness, Innovation Modes, And Business Models in Small- And Medium-Sized Enterprises
  • The Strategic Role of Design in Driving Digital Innovation
  • Correction to: Hybrid mosquitoes? Evidence from rural Tanzania on how local communities conceptualize and respond to modified mosquitoes as a tool for malaria control
  • BRIEF FOCUS: Optimal spacing for groundnuts in smallholder farming systems
  • COVID-19 pandemic: impacts on the achievements of Sustainable Development Goals in Africa
  • Explicit knowledge networks and their relationship with productivity in SMEs
  • Intellectual property issues in artificial intelligence: specific reference to the service sector
  • Africa RISING publishes a livestock feed and forage production manual for Ethiopia
  • Transforming crop residues into a precious feed resource for small ruminants in northern Ghana
  • Photo report: West Africa project partners cap off 2020 with farmers field day events in Northern Ghana and Southern Mali

Tag Cloud

    africa African Agriculture Business Business model Business_Finance Company Crowdsourcing data Development East Africa economics Education Entrepreneur entrepreneurs Entrepreneurship ethiopia ghana Health_Medical_Pharma ict Information technology Innovation kenya knowledge Knowledge Management Leadership marketing mobile Mobile phone nigeria Open innovation Organization Research rwanda science Science and technology studies social enterprise social entrepreneurship south africa Strategic management strategy tanzania Technology Technology_Internet uganda

Categories

Archives

  • A review on biomass-based hydrogen production for renewable energy supply 1k views
  • Can blockchain disrupt gender inequality? 764 views
  • Apply Now: $500,000 for Your Big Data Innovations in Agriculture 760 views
  • Prize-winning projects promote healthier eating, smarter crop investments 717 views
  • Test Your Value Proposition: Supercharge Lean Startup and CustDev Principles 706 views

Copyright © 2005-2020 Innovation Africa Theme created by PWT. Powered by WordPress.org